Use of Free-Flight, Dynamically-Similar Models
In Estimating Full Scale Aircraft Behavior

The January 1987 issue of Sport
Aviation carried a provocative article
by Molt Taylor and Jerry Holcomb on
the use of free-flight, dynamically-simi-
lar models in estimating certain impor-
tant full-scale parameters by way of
simulation.

It is the purpose of this article to ex-
pand on the principles so ably intro-
duced by Taylor and Holcomb. It pro-
vides numerical scaling factors and re-
marks appropriate to designing and
building the model, flying it and sub-
sequently extending the test data de-
rived therefrom to full scale.
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As defined here, a dynamically simi-
lar model is one whose size, propulsive
power, weight and weight distribution
are all in scale with the full size aircraft
being simulated. It is a model which,
like its full size counterpart but unlike a
recreational model, responds to inertial
as well as aerodynamic forces. The ob-
jective is to have it fly in scale with its
full size counterpart.

The model is assumed to be non-in-
strumented and radio controlled. Flight
test data are taken by eyeball, a stop-
watch and maybe a tape measure. The
model is built to a high degree of perfec-
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tion and flown by experts. Its behavior
is judged by persons having a well-de-
veloped sense of what it is trying to tell
them. In short, the model is an en-
gineering tool, designed, crafted and
used like the precision instrument it is.

It should be recognized early on that
even very accurately scaled models do
not represent true, miniature analogs of
full scale when compared on the basis
of performance, as will be seen as this
article develops. However, much can be
learned from them and, if one takes the
test data derived therefrom with a pinch
of salt, much of it can be extended with
modest validity to full size.

Models can be particularly useful
where the design departs significantly
from what we have come to consider
“conventional” and/or the flight behavior
of the model turns out to be gross, rad-
ical or erratic. In both cases, significant
clues to full size behavior are offered.
(Taylor and Holcomb state that they
learned a great deal from the fact that
their model crashed. That can be con-
sidered a solid data point!) However,
such clues can be considered valid only
if the model is dynamically similar to
the aircraft being simulated. This is to
say that the propulsive power, the
weight and the distribution of that
weight are all in scale with full size. A
model built only to linear scale and little
else may be considered simply a recre-
ational model; having limited use as an
aid to full-scale design.

The thoughtful experimenter is drawn
to consider what the “big boys” (the
major manufacturers) are doing, or not
doing, with free flight, dynamically simi-
lar models. On the one hand it is prob-
ably safe to say that if such models
were as useful to full scale design as
we would suppose, the majors would
be making extensive use of them. Such
does not, however, appear to be the
case.

On the other hand, unlike homebuil-
ders such as Taylor and Holcomb, no-
body ever accused the manufacturers
of personal airplanes, at least, of being
particularly innovative. But they do
have computers which (of course) solve
all the problems.



Fig. 1 - Example Calculation for Pitching Moment of inertia of Full Size Aircraft

Note: This calculation is shown only to illustrate technique. A complete calculation would
show scores of weight items in the table below instead of only 5.

8.2 =1157.9 slug ft.2

Weight
item Wit (w), Ibs. Mass, slugs*®

1 250 7.76
2 100 3an
3 500 15.53
4 80 2.48
5 50 1.656

log = 11497 +

*Mass = w/32.2

d, ft. d> |1=Massxd® |,
7.0 49 380.2 5.2
4.0 16 49.8
40 16 2485 3.0

10.0 100 248.0

144 223.2 =3
1149.7 8.2

Measuring “Scale” In A Dynamic
Model

By way of definition, in the kind of
recreational model we see flying on
weekends, “scale” refers, of course, to
that fraction of full size to which the
model is built. Size in this case refers
to linear dimensions such as span,
length, etc.

In dynamic models the term “scale”
has an additional connotation, depend-
ing on the specific factor under consid-
eration. The scale is not linear, but is
expressed in terms of linear scale. For
example, although a 1/5 scale model
would have a wing span 1/5 as long as
its full size counterpart, the scale
weight would not be 1/5 the weight of
the full size aircraft, but 1/125. This is
because weight varies as the cube of
linear dimensions.

You can prove this to yourself by con-
sidering the case of an ordinary tin can.
If you double its size you double every-
thing about it; its diameter, its height
and the thickness of its “skin”. When
you double the diameter and height you
find you have squared the area (multi-
plied it by four), so if you stop right here
you have squared the weight. However,
since you also double the thickness of
the skin you in effect add four times
more to the “area”. In sum, you no
longer have area but volume, which for
the double-scale can is now 8 times the
original volume, bringing 8 times the
weight. 8 is 2 cubed, right?

Going in the other direction, if you cut
the can to half size, the weight scales
to 1/2 cubed, which is 0.125, or 1/8. The
1/2 scale can now weighs 1/8 that of

the original one.

Weight varying as the volume repre-
sents the dimensional conversion of
weight to linear scale. Dimensional con-
version is symbolized by the Greek let-
ter, Lamda (A) and is the reciprocal of
linear scale, e.g., in a 1/5 scale model
A\ would equal 5.

Dimensional conversions for other
factors to be scaled in a dynamic model
appear in Table 1 as “scaling factors”.
Although the other factors shown in the
Table cannot be analyzed as simply as
was done in the tin can analogy for
weight, they have been analyzed and
tested against full scale aircraft. The
physics is valid.

The essentials of Table 1 are adapted
from a work (Ref. 1) published 37 years
ago by a brilliant young engineer named
Ermest G. Stout, who in time came to
guide the technical fortunes of the WW
Il Consolidated-Vultee Aircraft Corpora-
tion (now General Dynamics). Stout in-
troduced aircraft dynamic modeling to
the U. S. in 1938 and reports having
experienced a high degree of success
with it.

Model Size and Weight

For a number of reasans it is advisa-
ble to make the model as large as prac-
ticable. First, the larger the model the
less difficult it is to hold the weight to
scale values.

Consider, for example, a 1/8 scale
model of the Cessna 172, which has a
wing span of 35.8 feet and (in one ver-
sion) a gross weight of 2645 pounds.

According to Table 1, weight varies

inversely as the cube of k. The weight
of the model would, then, be 2645
pounds divided by 8 cubed, or 5.16
pounds. A mode! having a span of 4.48
feet (35.8/8) might be difficult to build
on a budget of only 5.16 pounds.

The situation is made even more
pressing by the requirement (explained
later) that only about half of this weight
be in the model itself, the remaining half
being represented by the installation of
movable ballast weights. These ballast
weights are needed to permit adjust-
ment of the model's Moment of Inertia,
more of which later.

Going from 1/8 scale to, say, 1/5
scale makes a large difference in model
weight and thus tends to make building
it easier and more accurate. A 1/5 scale
model of the Cessna 172 would weigh
just over 21 pounds, half of this (10.16
Ibs.) going into the model itself and half
into ballast. Building a model with a
span of 7.16 feet (35.8/5) tor 10.6
pounds doesn’t seem outside the limits
of practicability. If it turns out to be so
in a specific case, the model should be
made even larger.

Another reason for making the model
large relates to Reynolds Number (RN),
which is based partially on wing chord.
As explained later, so long as the
Reynolds Number is above 120,000 or
so the increase in airfoil drag coefficient
with decreasing RN is not likely to be
serious, although it should be consid-
ered when extrapolating model data to
full scale. Similarly with the decrement
in maximum lift coefficient.

The 1/5 scale model Cessna, having
a wing chord of just under a foot and
flying at a scaled maximum speed at
sea level of 64 miles per hour (see
Table 1), would be flying at a wing BN
of about 614,000, which is comfortably
above the suggested 120,000
minimum. However, the farther re-
moved from 120,000 the more accurate
the extension of model flight data to full
scale.

A third reason for making the model
large is that its dynamic behavior in
flight (pitching, rolling, yawing) is more
quantifiable than in a small model be-
cause small models tend to be more
“twitchy” in flight which makes eyeball
assessment of their behavior more dif-
ficult.

A fourth reason for using a large
model is that measuring its Moment of
Inertia tends to be more accurate.

Model Airfoil Selection and Reynolds
Number

According to Schmitz (Ref. 2), de-
pending upon the chord of the wing and
the speed of flight, airfoils intended for
use on full size aircraft suffer a perfor-
mance loss when used on models; the
drag coefficients are higher while the
maximum lift coefficients are lower. Just
how much the loss in performance is
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difficult to say because good test data
on models tend to be in short supply.
This makes extrapolation of perfor-
mance to full size less than accurate. In
order to ease the problem somewhat,
Schmitz recommends the use of thin-
ner, more highly cambered and
sharper-nosed airfoils.

In reviewing some basic
aerodynamics, one notes that the main
reason for the difference in airfoil perfor-
mance between model and full size is
because the air flow interacts differently
with the model than with the full size
aircraft. This difference is reflected, of
course, in the familiar term, Reynolds
Number.

Reynolds Number is an expression
which relates the viscous and inertia
forces in the airstream boundary layer.
Numerically, it equates (at sea level) to
about 800 times the wing chord in in-
ches, times the flying speed in miles per
hour. A model having a wing chord of
six inches and flying at 25 miles per
hour is operating at a wing RN of about
120,000.

The reader will note the frequent re-
currence of Reynolds Number in this ar-
ticle. This is because much of the “prob-
lem” with models can be assigned di-
rectly to their characteristically low RNs.

The message carried by Reynolds
Number is that some very low drag
coefficients and high maximum lift coef-
ficients can be achieved where the flow
is smooth (laminar) and the flow re-
mains attached to the surface. As is
generally known, however, laminar
flows tend to be very unstable, breaking
away from the surface with littie provo-
cation. And of great significance is the
fact that any time the flow separates
from the surface there results a quick
and dramatic increase in drag. Whereas
low RNs encourage laminar separation,
high RNs encourage the flow to remain
attached.

If the flow is turbulent but still at-
tached the drag will be higher than in
attached, laminar flow, but lower than
in separated flow. Turbulent flow tends
to delay separation.

Achieving attached laminar flow at
RNs below about 100,000 is virtually
impossible with any practical airfoil con-
struction.

Some idea of the influence of RN on
drag may be seen in data provided by
Hoerner (Ref. 3). His data show a 12%
thick streamlined section operating at
an RN of 100,000 to have about 2.5
times the zero-lift drag coefficient of the
same section operating at 1,000,000
RN. A 20% section operaling at those
same RNs shows a drag coefficient
close to 4 times higher at the low end
of the RN range than at the high end.

Trying to extrapolate model RN data
to full size may be considered an exer-
cise in futility. Drag, which is a prime
ingredient in speed performance,

32 JULY 1987

lg =we | T2 -¢ |- 1,
4’ g

or, solving for T where |
is known:

T=2%w

3
0 I~

CASE 1 - OVERHEAD PIVOT

Fig. 2 - Determining Moments of Inertia via Compound Pendulum
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doesn’t scale at all at low RNs, and
hardly at all at high RNs. Test data are
needed for the specific airfoil or shape
involved, measured at the Reynolds
Number involved.

In order to minimize the effects of low
RN, modelers often purposely force the
flow to become turbulent, this by lead-
ing edge trip wires, thin, sharp-nosed
airfoils or combinations of these and
other strategems.

Models flying at RNs above 120,000
or so show considerably less influence
on drag and maximum lift than do mod-
els operating below that value. For this
reason it would seem prudent to use
wing sections not over 12% thick on
models used to simulate full scale air-
craft, even though the latter might have
thicker sections. Structural considera-
tions will, of course, bear heavily on the
decision.

Scaling the Model to Fit the Power
Available

As Table 1 shows, power varies as A
raised to the power of 3.5. The 1/5 scale
model used as an example in the Table
requires 0.57 horsepower in arder to
scale with the 160 horsepower of the
full scale aircraft.

The question arises, what does one
do if a motor of the required power is
not available? The answer is, one re-
scales the model to whatever pow-
erplant is available. Determining the
new scale is simple, but a calculator
capable of handing fractional expo-
nents is needed.

Using the above case as an example,
consider the use of a motor rated at
0.40 horsepower; the closest to 0.57
harsepower assumed available. Simply
divide the full scale power by 0.40 and



raise the result to the power of 1/3.5, or
0.2857. A turns out to be 5.54 instead
of 5, and the model scale is no longer
1/5, but 1/5.54. For quick reference and
for those users having calculators of li-
mited capability, Table 2 does this job
for selected ratios of full scale power to
model power.

One can use motors as small or as
large as desired so long as the model
is scaled to fit. In using small motors,
however, be advised (again) that if the
model turns out so small that Reynolds
Number considerations become signifi-
cant, extending flight test data to full
scale will suffer. The same can be said
of model weight, where as stated ear-
lier, the smaller the weight the more dif-
ficult to manage.

It is recognized that since model
airplane (reciprocating) engines are
normally rated in terms of displacement
rather than horsepower, some difficulty
can be extected in relating the two. How
to solve this problem is left to the in-
genuity of the reader; displacement sel-
dom correlates with horsepower from
one engine to the other.

Although knowing the rated horse-
power of the engine is essential, even
more useful would be a curve of full
throttle horsepower versus rpm be-
cause with this curve one could throttle
the engine to the required output, as-
suming the engine were big enough in
the first place.

If the experimenter can handle the
weight of batteries, some good electric
motors are commercially available.
Such motors are commonly rated by
horsepower, or watts, from which horse-
power can be easily derived.

Propeller Scaling

It all the propeller linear dimensions,
rpm and blade angles are scaled in ac-
cordance with Table 1, the propeller
helix angle (V/nD) of both the model
and full scale propellers will be equal,
and so will the power coefficient (C,).
Thus, the power absorbed by the pro-
peller will be in scale with full size, as
will the thrust.

However, the influence of the lower
Reynolds Number of the model propel-
ler still needs to be considered because
of the increased blade drag coefficient;
propellers do have small chords.

The Reynolds Number of the Cessna
172 propeller at the three-quarter radius
(the usual propeller reference radius) at
2750 rpm and 144 miles per hour is on
the order of 1,250,000. The RN of the
1/5 scale model propeller, taken at the
same radius fraction, at a scaled 6160
rpm (see Table 1) and 64 miles per hour
computes to about 165,000. Although
this is close enough to the recom-
mended 120,000 minimum to warrant
some concern there’s not much one can
do to raise the RN without unduly com-
plicating the whole scaling exercise.

Thus, in this instance the modeler is left
with the option of ignaring the problem
or trying to guess the effect — or re-
scaling the whole model to fit the pro-
peller. The author's vote would be to
ignore it and hope for the best. How-
ever, if the model is so small that the
propeller RN is really threatening
120,000, the logical option would be to
make the model larger.

Since reciprocating model engines
normally turn up much faster in terms
of rpm than do full size aircraft engines,
some difficulty will likely be encountered
in getting the propeller to scale both in
rpm and power absorbed. One solution
to this problem would be to use a speed
reduction drive; to make the propelier
rpm lower than the rpm of the engine.
This would at least make it more ac-
ceptable if not solve the problem com-
pletely. Such reduction drives are com-
mercially available on the model mar-
ket.

Using a reduction drive requires, of
course, the design of a propeller capa-
ble of absorbing scaled power at less
than scale rpm; a larger diameter pro-
peller with, perhaps, non-scale blade
angles. As is generally known, propeller
design is a science in itself, one cer-
tainly beyond the scope of this article.

Dynamic Behavior and the Moment
of Inertia

In considering the dynamic behavior
of the model (pitching, rolling, yawing)
as a precursor to full scale one needs
observe that dynamic events occur at
faster rates in the model than in full
scale. However, although practical con-
siderations might mitigate against in-
strumenting the model to determine the
dimensions of these events, one can at
least approximate the time during
which they occur. Time can be scaled.
As Table 1 shows, it varies as the
square root of .

For example, a 1/9 scale model (A =
9) can be expected to pitch close to 3
times (the square root of 9) as fast as
the full-size aircraft for a given control
input. Stated the other way around, the
full-size airplane will pitch about a third
as fast as a model in this scale. As a
clue, to subsequent full scale behavior
in flight test, the test pilot is sure to tuck
this away in his memaory bank.

In order to make the model pitch, roll
or yaw “in scale”, it is vital that its mo-
ment of inertia about the appropriate
axes through the CG be in scale, too.
This requires, of course, that the mo-
ment of inertia of the full size aircraft be
known, at least in close approximation,
beforehand.

Moment of inertia is a measure of a
rotating body’s resistance to accelera-
tion. To illustrate: Consider the rather
absurd case of two flywheels of identi-
cal dimensions, one made of iron and
the other of balsa.

Clearly, if the same torque is applied
to both flywheels the lighter flywheel will
come up to a given rpm more quickly
than the heavier one. It will also come
to a stop quicker when the same brak-
ing torque is applied.

Applying this analogy to airplanes,
and continuing the absurdity of the
example to make the point, consider
two airplanes of identical dimensions
and, like the flywheels, one of iron and
the other of balsa. If these aircraft are
rotated in pitch about their respective
CG’s from the same input from the tail
(from elevator movement, say), the
balsa aircraft will respond much faster
than the iron one. This is because its
pitching moment of inertia is lower.

Moment of inertia (or in this case,
mass moment of inertia) is simply the
product of the mass of each part of the
aircraft and the square of its distance
from the aircraft CG; the products all
being subsequently added together.
(Also refer to the example shown in Fig-
ure 1.)

Mass, of course, is simply the weight
of the object (for convenience, in
pounds) divided by “g" (32.2 feet per
second squared). To keep the units
consistent, distance is measured in
feet. The product comes out in units of
slug feet squared. Moment of inertia is
symbolized by the letter “I" and, since
the | is taken about the aircraft CG, it is
symbolized by “I.;". When considering
pitch, roll and yaw separately there is
no confusion in calling any one of them
lo- When considering them in combina-
tion, the identification has to be
changed in order to keep the bookkeep-
ing straight.

It is not normally considered practical
to compute the I; of a model, as is
almost always the case in full scale
airplanes because the model's indi-
vidual parts are too small and light to
yield anywhere near accurate values for
the |. And here is where models pay
off; you build the model and determine
its |, by test. The procedure is
explained later.

As slated earlier, the example
Cessna 172 has a gross weight of 2645
pounds and a 1/5 scale model system
should weigh just over 21 pounds.

The model itself should actually
weigh about half this value because
you'll be adding identical movable bal-
last weights on each side of the CG to
bring the total weight to 21 pounds with-
out altering the CG position. Using two
weights in this manner takes care of the
“pitch” mode, such weights being suffi-
cient if only the pitching behavior is of
interest (frequently the case). If rolling
and yawing behavior (such as maneu-
vering, spinning, etc.) are also of con-
cern, two additional weights need be
disposed equally about the CG, in a
spanwise direction. This means that the
individual ballast elements will be lighter
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than in the case of pitch only, the decre-
ment in moment of inertia being made
up by moving the weights farther apart.

The reason for doing all this is to per-
mit your actually measuring the |.,, and
altering it later by moving the weights if
needed to reflect the proper scale.

There are two approaches to testing,
each employing the principle of the
compound pendulum and each giving
the same answer. (Also refer to the
sketches shown in Figure 2.)

One method involves hanging the
model, say, from a single point in the
ceiling of your workshop, on two wires
or cords, one well forward of the CG
and the other well aft. You now have a
compound pendulum. By giving the
model a small, gentle push in the ap-
propriate direction and timing its oscilla-
tions, you can determine the oscillatory
period (T), which is simply the total
number of seconds divided by the total
number of cycles. (Recall that one cycle
is one complete swing, to and fro.) Of
course, the greater the number of cy-
cles (should be at least 30) and the
longer the suspension the greater the
timing accuracy, which is vital. Small er-
rors in timing beget large errors in I,
Knowing the period, the weight (w) of
the modei and the vertical distance (¢
of the CG from the pivot point in the
ceiling, you can calculate the I of the
model, using the upper equation shown
in Figure 2.

Another technique is to make the CG
of the model itelf the pivot point and
complete the compound pendulum by
hanging a bob weight below it on a pair
of fairly stiff wires or lightweight
(wooden) struts. Needless to say, it is
vital that friction at the pivot point be
held to a minimum. The actual weight
of the bob is unimportant; maybe 1/4
the model weight. You can now go
through the same timing exercise as be-
fore and from the data thus obtained
calculate the |

Itis more than likely that the | deter-
mined from your first test will differ from
the I, required. In this case move the
ballast weights in the model a little
(equidistant from the CG so as to not
alter its position) and test again. Repeat
this procedure until the required |, is
obtained. Lock the weights down for
flight.

Again using the Cessna 172, which
is reported to have an I in pitch of
1346 slug feet squared, as an example
and noting from Table 1 that moment of
inertia varies as the fifth power of A, the
pitching moment of inertia we need
develop in the 1/5 scale model is 1346
divided by 3125, or 0.431 slug feet
squared.

To achieve this value let's hang the
21.16 pound model 6 feet from the ceil-
ing and start it swinging. We continue,
timing the oscillations and moving the
ballast weights untili we measure a
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period per oscillation of 2.74 seconds
as calculated from the equation for T in
Figure 2. We can test to see if this 2.74
seconds actually gives us 0.431 slug
feet squared by introducing the 2.74
into the equation shown in Figure 2 for
leg- This checks out close enough for all
practical purposes to the required 0.431
slug feet squared.

A small caveat: The term “I," appears
in the upper equation of Figure 2 and
again in Figure 1. This term represents
the | of the bob weights around its own
CG and for precision it should be com-
puted. It also represents the | of items
in the model or the airplane about their
CG. Since |, takes into account the
shape of the weight item as well as its
mass, calculation usually calls for dig-
ging out the physics texts for an equa-
tion suited to the shape. This can be
more trouble than it is worth because
the value of |, is sure to be miniscule
compared with the |, of the model as
determined without it; probably less
than 1%. Hence, it can usually be neg-
lected. In computing the I  of a full size
airplane some accounting for the 1,'s of
large, heavy items such as the engine,
fuel and crew is often taken, even
though their impact on the result is sure
to be small.

Scaling Factors For Estimating Full
Scale Behavior

Contrary to the implication carried by

the title of this article, most of what is
written here deals with scaling the de-
sign of the model down from full scale.
However, scaling the model's behavior
up to full scale remains the objective.

Note that the term “behavior” is em-
phasized over performance. This is
done for good reason; pitching, rolling
and yawing behavior is more confi-
dently extended to full scale than, say,
speed, which is one element of perfor-
mance.

As the reader might certainly gather
by now, it does not appear feasible to
extend model speed performance in its
various parameters to full scale with ac-
curacy. Again the main culprit is
Reynolds Number. One can only hope
that the data derived from the model
will at least be indicative of full scale
performance.

Schmitz gives one experimental data
point of interest in this connection; a
manned sailplane he examined showed
a maximum lift to drag ratio of 20. How-
ever, the best L/D a 1/10 scale model
of the sailplane could generate was 10.
Schmitz neither showed a correlating
scaling factor nor derived one, mainly,
one might suppose, because of the lack
of sufficient data on the effect of
Reynolds Number in the low RN range
involved.

If one is prepared to accept model
data on these terms, one may proceed
in extending the data to full scale in ac-

Table 1 - Scaling Factors
A = Full Scale Linear Dimensions
Model Linear Dimensions
Model Design
Example for 1/5 Scale Model (A =5)

Parameter Model Should Be: Full Scale Model
Linear Dimensions  Full Scale/x Span: 35.8 Ft. 35.8/5 = 7.16 Ft.
Area Full Scale/A® Wing: 174 sq, ft. 174/25 = 6.96 sq. ft.
Volume, Mass, Force Full Scale/A® Gross Wt. = 2645 Ibs. 2645/125 = 21.161bs.
Moment Full Scale/x* Full Scale/625
Moment of Inertia Full Scale/x® Pitch: 1346 slugft.?  1346/3125 = 0.431 slugft.?
Linear Velocity Full Scale/,/A  Max: 144 mph 144/2 24 = 64 mph
Linear Acceleration  Same as Full Same as Full Scale
Angular Acceleration  Full Scale xA Full Scale x 5
Angular Velocity Full Scale x/ A Full Scale x 2.24
Time Full Scale/,/k Full Scale/2.24
Work Full Scale/x* Full Scale/625
Power Full Scale/A®®  Rated: 160 hp 160/280 = 0.57 hp
Wing Loading Full Scale/x 15.2 psf 15.2/5 = 3.04 pst
Power Loading Full Scale x,/A 16.5 Ibs./hp 16.5x2.24 = 37 Ibs./hp
Angles Same as Full_ Same as Full Scale
R.p.m. FullScalex,/A  Rated: 2750 rpm 2750x2.24 = 6160 rpm

Full Scale Performance from Model Test
Example for 1/5 Scale Model (A = 5)
Full Scale Measured Derived

Parameter Should Be: Model Perf. Full Scale Pert.
Time Model x,/ Model x 2.24
Maximum Speed Model x,/\ 64 mph 64 x2.24 = 144 mph
Max. Climb Rate Model x,/\ 344 fpm 344x2.24 = 770 fpm
Takeoff Distance Model xA 160 ft. 160x 5 = 80O fi.
Pitch, Roll & Yaw Rates  Model/,/x 50°/sec. 50/2.24 = 22°/sec.




cordance with Table 1. Consider the fol-
lowing examples:

Take-Off Distance

Take-off distance is a linear dimen-
sion, of course, and distance is directly
proportional to A. As the lower part of
Table 1 shows, if a 1/5 scale model
were to get off the ground in, say, 160
feet, the full scale aircraft would be ex-
pected to take-off in 160 times 5, or 800
feet.

This assumes, of course, the ab-
sence of Reynolds Number effects.
Such is not precisely true, of course,
because the low RN's encountered in
the ground roll represent higher values
of the drag coefficient, which impact the
take-off acceleration. But in this case
the drag may be considered secondary
in importance to the mass of the aircraft
because during most of the ground roll
the greater part of the propulsive power
is taken up in accelerating the mass up
to take-off speed, while little is used to
overcome aerodynamic drag. The re-
verse is true, of course, once the aircraft
is in flight and climbing out.

As a point of interest, Stout reports
that a 1/8 scale, dynamically similar
model of the XP4Y-1 flying boat left the
water at a speed and in a time (and
thus in a distance) in scale with the full
size aircraft. However, he appears to
have “fudged” a bit on the model by in-
corporating full-span leading edge
slots, which the full scale airplane didn't
have.

Thus, although scaling mode! take-off
performance up to full scale as illus-
trated is not entirely accurate, some
good clues are offered.

Parenthetically, determining take-off
distance by calculation alone is often
unrewarding because of the large
number of variables involved. Calcu-
lated distances seldom match those
measured in test. It is likely that an ac-
curately scaled model would, in spite of
the reservations just expressed, do a
better job because most of the variables
are already “in the model” and its envi-
rons, and the model knows it — proba-
bly better than the computer does.

Stout's model, by the way, had a
span of about 14 feet and weighed
close to 80 pounds, representing a full
scale span of 115 feet and a gross
weight of 40,000 pounds, respectively.
His model would be considered large
in comparison with today’s recreational
models. But it apparently paid off for
him.

Rate of Climb

Rate of climb is normally expressed
in feet per minute; a velocity. Thus, full
scale climb rate would equate to the
model's climb rate times the square root
of \.

As shown in Table 1, if a 1/5 scale
model were to show a climb rate of 344

Full Scale HP
Model HP Avail.
100
200
400
600
800
1000
1200
1400
1600
1800
2000

*“Interpolation OK

Table 2 - Factors Used in Scaling Model to Power Available*
(For Users Having Calculators of Limited Capability)

A = | _FullScaleHP | 2%
Model HP Avail.
b g
454
5.54
6.22
6.75
7.20
7.58
792
8.23
8.51
8.77

feet per minute the climb rate of the full
scale aircraft would compute to 344
times the square root of 5, or 770 feet
per minute. Note from the Table that
angle of climb would remain the same.

Roll Rate

Roll rate is an angular velocity which
can be expressed in degrees per sec-
ond. Table 1 shows that angular veloc-
ity in full scale varies inversely with the
square root of A. If a 1/5 scale model
showed a roll rate of, say, 50 degrees
per second the full scale aircraft would
be expected to roll at 50 divided by the
square root of 5, or about 22 degrees
per second.

Concluding Remarks

Although dynamically similar models
offer clues to the behavior of full scale
aircraft, “clues” have different scales of
validity.

As has been suggested here, clues
to aerodynamic performance (speeds)
have a lower level of validity than those
relating to inertial behavior (pitch, roll,
yaw).

The lower credibility of aerodynamic
clues is not seen as a serious obstacle
to full scale design, however, because
calculating estimated performance in
full scale is no longer the complicated
process it used to be. Books aimed
specifically at the homebuilder are now
available to ease the burden and im-
prove the understanding. Two of which
come immediately to mind are Craw-
ford's “A Practical Guide to Airplane
Performance and Design” and Stroj-
nik's “Low Power Laminar Aircraft De-
sign”. Both are frequently advertised in
Sport Aviation.

The higher credibility of clues to iner-
tial behavior comes in good measure
from the fact that Reynolds Number is
seldom a factor of consequence. Thus,
if the model's size, power, weight and
moments of inertia are accurajely

scaled, what you see in the model is
likely to be what you get in the full size
aircraft — in proper scale, of course.

Unlike calculating aerodynamic per-
formance, calculating dynamic behavior
is a task of monumental dimensions,
one best left to the professionals. In
support of this advice, pick up any text
on aircraft dynamics. If you can get past
the first page you have real mathemat-
ical talent — and probably make your
living at it. Unfortuantely, insofar as is
known to this author, no books on air-
craft dynamics aimed specifically at the
homebuilder exist.

Not to worry. It you'll reflect on the
proposition that errors in predicting
aerodynamic performance are less
likely to be threatening to life and limb
than errors in predicting pitch, roll and
yaw behavior, you'll stop searching for
that non-existent book or that profes-
sional and build a model instead. In so
doing you stand a fair chance of beating
the professional at his own game.

Finally, a suggestion to those model-
ers who build solely for competition. For
a real competition, make your models
not only in linear scale, but in dynamic
scale as well.
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Table 3 - A Raised to Powers Used in This Article
(For Users Having Calculators of Limited Capability)

A Jx A N
4 2.00 16 64
5 224 25 125
6 245 36 216
7 2.65 49 343
8 283 64 512
9 3.00 81 729

10 3.16 100 1000

A35 A A5
128 256 1074
280 625 3125
529 1296 7776
907 2401 16807

1448 4096 32768

2187 6561 59049

3162 10000 100000
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Dynamic
Modeling

by Stan Hall, EAA 10883
1530 Belleville Way
Sunnyvale, CA 94087

Conclusion

Testing of Structurally-
Scaled, Sacrificial
Models As An Aid To
Full Scale Design

The July issue of SPORT AVIATION
carried an article by this author on
the use of free-flight, dynamically-
scaled models in estimating the be-
havior of full scale aircraft still on the
drawing board. The article postulated
that a properly scaled and carefully built
model can aid in the design of its full
size counterpart if the observer is skilled
in interpreting its behavior and if he rec-
ognizes the several limitations inherent
in the method.

The present article deals with the
other half of the problem, the structure.
Ordinarily, little engineering skill is re-
quired to configure the outside shape of
a simple airplane. But in order to assure
that the aircraft will be structurally
sound the designer needs all the skill
he can get. Marginal aerodynamics sel-
dom kills; unsound structures guaran-
tee it.

The question arises, where does an
innovative yet relatively untutored, en-
thusiastic but nevertheless responsible
first-time designer turn for help, particu-
larly if he can’t afford the services of a
professional?

The answer is, he doesn't need help
if he can load-test his structure. If it
won't do the job he can redesign, re-
build and test again. Whatever the be-
nefits of this approach, however, it is
clear that this can become very expen-
sive, not to mention frustrating and time
consuming.

It is the premise of this article that
load testing properly scaled and care-

fully built models can, with minimum
limitations in the method, show directly
what, if anything, needs be done in full
scale to assure structural integrity, and
do so at a minimum of cost, time and
frustration.

A professional structures engineer
can promise little more. Testing an-
swers questions unanswerable by other
means, in unambiguous terms.

The technique involves determining
the loads and torques to be applied to the
full scale aircraft (referred to as the “pro-
totype” here), scaling them down to
model-size, testing the model and, fi-
nally, scaling the test data back up
again to full size. If the model takes the
scaled-down loads it is likely that its full
size counterpart will take the scaled-up
ones. If it doesn't, well, back to the
drawing board. Better to erase a line
than erase a life.

The principles outlined in this article
can be applied to essentially any struc-
ture of the aircraft. However, to illustrate
how they are applied, it is the wing that
is emphasized.

Model! Testing and FAR 23

Determining the proper test loads and
torques and their points of application
on the model depends, of course, on
knowing what they are in the prototype.
Although determining these values is
beyond the scope of this article, it is
recommended that the designer derive
them from reliable criteria such as found
in Federal Aviation Regulations, Part
23, entitled, “Airworthiness Standards;
Narmal, Utility and Acrobatic Airplanes”
(FAR 23).

In order that model test data be prop-
erly extended to prototype design, the
neophyte designer needs to be clear as
to the meaning of some terms used fre-
quently in this article and in FAR 23.

Stan Hall

These easy-to-understand terms are,
“limit load”, “ultimate load", “yield stress”
and “ultimate stress”.

Limit loads represent the highest load
the aircraft structure is likely to en-
counter during its lifetime. When the air-
craft is designed to limit loads, the
applied stresses resulting therefrom are
set against the “yield stresses” allowed
in the material. Yield stesses are those
which cause the material to take a per-
manent “set”.

Ultimate load is, in most cases, and
by FAA regulation, 1.5 times the limit
load. When the aircraft is designed to
ultimate loads, the resulting applied
stresses are set against the stresses at
which the material will fail, hence, “ulti-
mate” stresses.

Data on the allowable yield and ulti-
mate stresses for materials may be
found in the various texts and reports
on the strength of materials.

In Type Certification, the FAA re-
quires rigid adherence to the criteria set
forth in FAR 23. The designers of home-
built aircraft are exempt from this re-
quirement since homebuilts are, of
course, normally licensed in the Experi-
mental category.

Even so, the FAA criteria derive from
decades of development and refine-
ment performed by legions of very cap-
able engineers, builders and pilots. The
criteria make a great deal of sense and
prudence suggests that they be used
by all designers, including those in-
terested only in the Experimental certifi-
cate.

In Type Certification the FAA requires
substantiation of wing strength at all
four (sometimes five or even six) cor-
ners of the Basic Flight Envelope (the
V-n diagram) by test or by test supple-
mented by engineering analysis. By the
way, the V-n diagram and how to con-
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Table 1 - Scaling Factors for Structural Testing

b

.
j— Wing Panel

Concentrated Load

v
\— Distributed Load

b -~.axbd -
* mac 0.67[A+b m], d

#* Resonant vibration frequency

(For equal stresses in model and prototype)

Prototype Linear Dimensions
Model Linear Dimensions

L~ ¢ aircraft
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Example for Wing
Parameter |Model should be: Prototype 1/2 Scale Model (X= 2)
a, ft. Proto/a 5.49 5.49/2 = 2.75
by ft. Proto/a 2.5 2.75/2 = 1.38
o, T, Proto/A 17.00 17.0/2 = B.5
d, ft. Proto/A 755 7.35/2 = 3.78
mac, ft. Proto/a 4,29 4,29/2 = 2.15
W, 1lbs. Proto/al &455 4455/4 = 1113
W, psf Same as proto 63.6 63.6
§, in. Proto/n 6.0 6.0/2 = 3,0
T, ft.lbs. Proto/a! 1600 1600/8 = 200
@, radians| Same &s proto
g cps Proto x & 6 6x 2 =12
cla + 2b)

3(a + b)

struct it are shown in FAR 23.

The regulations require that the struc-
ture neither yield at limit load, to the ex-
tent of jeopardizing the operation of the
aircraft, nor fail at ultimate load.

In testing, in order to establish that
the structure will not fail at ultimate load,
one has, of course, to exceed the limit
load and, as this load is passed on the
way to ultimate load, the structure is
sure to take on a serious, permanent
deformation, rendering it useless for
more than one test. Demonstrating
structural integrity at four or more points
on the V-n diagram implies the availabil-
ity of four or more identical test struc-
tures. Obviously, this can (and does)
get expensive.

It is supposed that the designer of a
homebuilt aircraft, although keen on as-
suring that his wing will be safe at all
signincant points on the V-n diagram, is
not financially disposed to do so. Of
course, since he is going only for the
Experimental certificate, he doesn'’t
have t0.

Nonetheless, he needs some kind of
test to assure himself that his aircraft
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will at least meet the critical points on
the V-n diagram.

It is proposed here that those points
are two in number, and that they can be
satisfied with two tests on one test
specimen, one model. One test (bend-
ing) is to be destruction. The model is
sacrificed. The other test, which pre-
cedes the bending test is a test of tor-
sional stiffness. This test does no harm
to the wing.

It is not believed that these ab-
breviated tests over-simplify the prob-
lem, particularly when the likely alterna-
tive available to the unsopisticated de-
signer is to do no testing at all, trusting
to luck or Divine Intervention that his
aircraft will somehow hang together.

The Scaling Factors

A structural test model needs, of
course, to be scale geometriccally. It
also needs to be scaled structurally.

Geometric scale is by definition ex-
pressed in terms of linear dimensions.
Thus, a 1/5 scale model would have a
wing span of 1/5 that of the prototype.
Its scale factor would be five.

Structural scale is not always the
same as geometrical scale. It is, how-
ever, expressed in terms of geometric
scale and is symbolized by the Greek
letter Lambda (A). Depending on the
structural parameter involved, numeri-
cal values for load, stress, deflection or
other structural, entity can be trans-
ferred from model to prototype, or the
reverse, by multiplying or dividing A or
A raised to some specific power.

Structural scaling factors are shown
in Table 1 and derive from the estab-
lished premise that geometrically simi-
lar (scaled) structures of different sizes,
if made of the same material, fail at the
same stress (e.g., pounds per square
inch).

As described in the aforementioned
SPORT AVIATION article, in free-flight,
dynamically similar models, force (or
weight) is proportional to A cubed and
moment (or torque) is proportional to A
raised to the fourth power. In structures,
however, in order fo yield the same
stress in the model as in the prototype,
force or weight needs to be proportional
to \ squared and torque to A cubed.

When this is done, bending deflection
is seen to vary directly with geometric
scale while torsional deflection angle re-
mains unchanged. Test wing loading
will be the same in the model as in the
prototype and thus so will the aircraft
speed at which the stresses will be the
same. Similarly, the resonant frequency
of vibration (as in flutter) will vary in-
versely with A. A half-size tuning fork,
for example, will vibrate at twice the fre-
quency of its full size counterpart.

When a model structure fails, one can
be reasonably assured that under scale
conditions of load and point of load ap-
plication, the full size structure will fail
in close to the same place and in much
the same manner as the model. This is
very potent information, information
which can be applied directly to full
scale design.

Scaling and Building the Model

In order to permit extension of model
test data to full scale, the structure of
the model must, as indicated earlier, be
accurately in scale with the prototype.
This means, for example, that all the
dimensions of a half-scale model struc-
ture be half those of the prototype struc-
ture, including material thicknesses,
bolt sizes, rivet diameters and spacings,
rib and stiffener intervals, etc. What is
needed is true geometric scale in every
structure that takes load which, except
as indicated later, includes almost ev-
erything.

In composite structures in half scale
this means half the number of cloth
layers, of the same filiment diameter, or
vice versa. Scaling does not apply to
foam because we are talking density in
foam, not size. Size effects will take
care of themselves.
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- Example Calculation of Limiting FAR 23* Wing Flutter Speed as Derived from
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It is recognized that problems may
arise in procuring materials in scale
thickness or bolts in scale diameter. In
such cases the experimenter needs to
scale the entire model to those
thicknesses or diameters that are avail-
able. Clearly, some good planning is re-
quired.

In the case of steel bolts, one must
not be tempted to compensate the lack
of model-scale steel bolts with, say,
aluminum rivets of larger than scale
diameter, hoping that balancing diame-
ter off against material strength will give
the same stress. This may work in one
loading mode and not another, and
bolts are commonly called upon to pro-
vide strength in more than one mode;
shear and bearing, for example. In
order for the applied stresses to be the
same in the model as in the prototype,
the materials must be the same,

Let the record show that techniques

do exist for accounting for the use of
different materials in the model and in
the prototype. The designers of bridges
and dams do it all the time. But it re-
quires a special skill. For us homebuil-
ders, better to stick with the same mate-
rials.

Scaling the thickness of fabric cover-
ing is, of course, unnecessary because
fabric is not considered a structural ma-
terial in the sense that it enters into the
solution of structural strength. Fabric
can, therefore, be omitted entirely in a
model designed for load testing. The
same goes for nails in wooden struc-
tures.

In principle, the model should be as
large as practicable in order to minimize
the multiplying effect of errors in build-
ing and test loading when applying the
results to full scale design. Also, the
larger the model the more likely are ma-
terial thicknesses in proper scale likely

to be available, particularly in the case
of metal aircraft.

It is, as implied earlier, unnecessary
to reflect in the model everything pro-
vided in the prototype — only those
structures which contribute to the basic
strength. Ailerons, for example, can be
considered in this category. Thus, a
model wing need not have an aileron,
control systems, fuel tanks, ancillary
bracketry, etc. which influence basic
strength to only a minor extent or not at
all.

The Torsion Test

The highest torsion in a wing without
sweep normally occurs at the maximum
design diving speed. As defined in FAR
23 this is speed V. Although the bend-
ing test discussed later calls for testing
the specimen to destruction, it isn't
necessary to twist the wing off in test to
establish its suitability for flight at this
speed because there is another FAA re-
quirement which, from a practical view-
point, can be considered to effectively
cover the torsional strength require-
ment. This is the torsional stiffness re-
quirement.

A wing which is strong enough in tor-
sion is not necessarily stiff enough to
prevent flutter. However, a wing that is
stiff enough to accommodate the flutter
requirement will in most cases involving
conventional structures be strong
enough to handle the torsion. So a test
of stiffness is in order.

Fiberglass structures are particularly
vulnerable to questions regarding the
relative importance of torsional stiffness-
and torsional as well as bending
strength. In some fiberglass sailplane
wings, for example, it is torsional stiff-
ness that designs the wing, not
strength. As a direct consequence of
high torsional stiffness in such wings,
the bending strength is also high,
bringing bending limit load factors from
an original 5 or 6 to 10, 12 or even
higher.

The FAA, in Airframe and Equipment
Engineering Report No. 45, “Simplified
Flutter Prevention Criteria for Personal
Type Airplanes”, specifies torsional
stiffness in terms of a Flexibility Factor,
a factor which must not exceed 200/
V2. This applies only to aircraft flying
at equivalent airspeeds below 260
knots, at or below 14,000 feet altitude,
and having no heavy, concentrated
weights (like engines and fuel) in the
outer wing panels. It is further restricted
to aircraft having fixed-fin and fixed-
stabilizer surfaces, and no T-tails or tail
booms.

In torsion testing with the wing root
restrained, a torque of arbitrary value is
applied at the tip and the resulting tor-
sional deflection angle measured at four
points along the span of the aileron.
From these and other data the Flexibil-
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ity Factor is derived. If this factor turns
out lower than 200/V?, fine. The impli-
cation is, if the aileron is properly mass
balanced, the critical wing flutter speed
will be above Vp, If not, the wing needs
to be stiffened in torsion.

Typical techniques for improving the
torsional stiffness involve using thicker
skins, adding more glass to the outer
surfaces or designing in thicker wing
sections to begin with. Model testing will
give a strong clue as to the proper
course of action.

it should be kept in mind that, al-
though in the stiffness test the angular
deflection is measured only along the
aileron span, the whole wing twists.
Thus, if torsional stiffening is required,
it should be done over the whole wing;
around the chord perimeter if stiffening
is to be achieved by adding to the skin
thickness.

Figure 1 shows a numerical example
of how to compute the torsional flexibil-
ity factor from a test of stiffness. The
technique comes directly from the FAA
report (No. 45) mentioned earlier.

The Bending Test

The highest bending stresses occur
at the corners of the V-n diagram. Fig-
ure 2 shows two methods of satisfying
by test, point A on the diagram, consid-
ered here to represent the critical point
for bending. Parenthetically, since
points A and D on the diagram carry the
same load factor, if point A is satisfied,
so too, automatically, is point D.

One bending test method tests the
whole wing and its attachments
whereas the other verifies only part of
the wing, a critical part but nonetheless
only a part.

In the first instance the wing is turned
upside down in a fixture which exactly
simulates the wing attachments to the
aircraft and sandbags are spread over
the wing in some true-to-life distribution.
The bags are placed, starting at the root
and working outboard, a few bags at a
time. The figure shows a starting (and
arbitrary) increment of 1/2 the total load,
followed by increments of 1/4, 1/10, 1/
10 and 1/20. It is desirable to measure
and plot the deflection of the wing at
intervals along the span at each load
increment to detect any potentially
dangerous departures from a smooth
bend in the wing. Sharp discontinuities
mean trouble.

Note from the illustration that in this
method the wing chord reference line is
tited downward 10 degrees. This
causes a portion of the test load to in-
duce a chordwise component in the for-
ward direction, thus simulating what ac-
tually occurs in flight. The 10 degrees
used in the figure is, by the way, arbi-
trary, but probably conservative.

The amount of load required on the
model derive, of course, from A, the
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Fig. 2 - Example Calculation and Suggested Techniques for Test

Loading 1/2 Scale Model Wing in Bending to Destruction

Aircraft gross weight
Limit wing load factor (ny)

Wing panel weight

Test load on panel = 1.5 x (@-@)
Wing panel area

Distributed test load »® /@
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Dist. from aircraft centerline to wing a.c.
Test load at a.c. (if ® not used) -@

above value shown in prototype column.
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63.6 psf 63.6 psf

90.6 in. 90.6/n = &5.3 in.

Actual weight will be proportional toyﬁé. However, in order to generate equal
stress levels in model and prototype, "weight" and load need be adjusted to be

#% Model should fail at this load or higher to forecast failure of prototype at or
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Method of Checking Entire Wing for Normal and Chordwise Strength
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\L Stabilize spareagainst lateral deflection

Method of Checking Normal Bending Strength of Spar Inboard of a.c., and Fittings at Root

scaling factor for bending. As shown in
Table 1, the load should be whatever
the prototype calls for, divided by A
squared.

As to the distribution of the load along
the span and along the chord, this prob-
lem has occupied aeronautical re-
searchers since time immemorial and,
as a result, some techniques leading to
precise distributions have been de-
veloped. Unfortunately, they are both
sophisticated and complex, far beyond,
in the author's view, the needs (and
perhaps the capabilities) of some desig-
ners of homebuilt aircraft.

Whereas computing the distribution
by so-called “rational” (read compli-
cated) methods accurately shows that
each square foot of wing area carries a
different load, one is not likely to go seri-
ously wrong by assuming that each
square foot carries the same load. This
vastly simplifies the loading problem.
The foregoing assumption does not,
however, apply to chordwise distribu-
tion, which tends to peak at or near the

leading edge. Calculating this distribu-
tion is also a highly complex undertak-
ing. However, so long as the test load
is based on the total area of the
chordwise element involved, stacking
the sandbags forward, say, of the first
third or so of the chord should have the
desired effect.

Those few homebuilders who engage
in structural testing commonly test their
full scale wings only to limit load, not
ultimate. They do this for the simple
reason that they don't wish to break
them, and in the frequently erroneous
belief that if the wing doesn't yield at
limit load, it won't fail at 1.5 times that
load.

Although many aircraft materials fail
at or near 1.5 times yield stress, some
do not. The designer should not, there-
fore, rest easy with this so-called 1.5
“safety factor”. It may not be there. Also,
in some structures loads have a way of
redistributing, forcing stiffer structures
to take load away from the more flexible
ones, sometimes causing overloading



and failure of the stiffer structures.
Here, the numerical value of the “safety
factor” becomes very elusive.

Composites represent a special case
because they don't seem to have a
yield point; like window glass they tend
to break without warning. In recognizing
this circumstance the FAA requires (in
Type Certification) that composite
structures be designed (and tested) to
loads twice the limit loads, or more, in-
stead of only 1.5.

The only reliable way by which the
allowable limit load in composites can
be determined is to test to destruction
and divide the failure load by 1.5. If the
limit load calculates to less than re-
quired, redesign is in order.

One of the beauties of testing the
model to destruction is that the load fac-
tor, redistribution and selective over-
loading hassle is eliminated. The failure
mode can be seen directly, and there is
no doubt as to the value of the allowable
limit load or how to placard the aircraft
so that this load is never exceeded.

The second loading method shown
in Figure 2 checks only the spar root
fittings and a portion of the spar. Here,
the entire load is concentrated on the
spar at a point corresponding o the
aerodynamic center (a.c.) of the wing.
This is done conveniently and safely
through the use of a hydraulic actuator.
Disintegrating wings and falling
sandbags constitute a real hazard.

The concentrated load technique has
the advantage of simplicity, but the dis-

advantge of restricting its usefulness to
that part of the wing inboard of the ac-
tuator. Spars have been known to fail
outboard of that point.

Concluding Remarks

Long association with homebuilding
convinces the author that the designers
of homebuilt aircraft, perhaps because
they don't know how, seldom test or
even perform rudimentary stress
analyses. The remarkable difference
between how these otherwise responsi-
ble designers view the importance of
structural strength versus how the pro-
fessionals see it may be noted in the
fact that the latter not only go to great
lengths to stress-analyze, but they do
extensive testing as well. They know
probably better than anyone that the
science of stress analysis has not yet
become so advanced as to substitute
entirely for testing.

By failing to expand upon his knowl-
edge of structures the unsophisticated
designer of homebuilt aircraft, particu-
larly if he also markets kits, makes his
customers unwitting test pilots. The
customer deserves better.

On the other hand, the customer him-
self needs to accept responsibility for
his own safety. It would seem right and
proper that the potential purchaser of a
kit (or any homebuilt) make pointed in-
quiries regarding how and to what ex-
tent the kit provider can substantiate the
structural integrity of his product. If the

answer is evasive or otherwise unsatis-
factory, it would also seem right and
proper that he go elsewhere.

The purchasers of Type Certificated
aircraft normally need have little con-
cern of structural safety if the aircraft is
properly maintained and flown because
from the time the first 3-view drawing is
made until the aircraft’s last day of ser-
vice, tight regulations by the FAA stand
vigilant watch.

Unfortunately, the price we homebuil-
ders pay for “freedom” from what we
often perceive as unduly restrictive gov-
ernment regulation is that we have no
way of knowing “for sure” that our air-
craft are as structurally sound as those
enjoying the benefits of extensive en-
gineering. It would seem prudent, then,
that organizations such as our EAA,
SSA, NASAD and other responsible
groups who stand at the forefront of
sport aviation take a harder look for so-
lutions.

Finally, it is recognized that there are
inherent dangers in treating the very
complex science of structural engineer-
ing in so truncated a manner as pre-
sented here. However, no designer
yearning to design his own airplane is
likely to be persuaded to go out and get
an engineering degree before he starts.
Truncated or not, he needs practical
guidance, guidance he can understand
and is willing to apply. Perhaps en-
couraging the structural testing of mod-
els would be a good place to start.
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